

AFRL-RB-WP-TP-2007-324

DECENTRALIZED PERIMETER SURVEILLANCE USING
A TEAM OF SMALL UAVs (PREPRINT)

Derek Kingston, Randal Beard, and Ryan Holt
Control Design and Analysis Branch
Structures Division

SEPTEMBER 2007

Approved for public release; distribution unlimited.
See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
AIR VEHICLES DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a
collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

September 2007 Journal Article Preprint 20 August 2007 – 12 September 2007
5a. CONTRACT NUMBER

In-house
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

DECENTRALIZED PERIMETER SURVEILLANCE USING A TEAM OF
SMALL UAVs (PREPRINT)

5c. PROGRAM ELEMENT NUMBER
62201F

5d. PROJECT NUMBER
A03D

5e. TASK NUMBER

6. AUTHOR(S)

Derek Kingston (AFRL/RBCA)
Randal Beard (Brigham Young University)
Ryan Holt (MIT Lincoln Laboratory)

5f. WORK UNIT NUMBER

 0B
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER
Control Design and Analysis Branch, Structures Division
Air Force Research Laboratory, Air Vehicles Directorate
Wright-Patterson Air Force Base, OH 45433-7542
Air Force Materiel Command
United States Air Force

Brigham Young University

MIT Lincoln Laboratory

AFRL-RB-WP-TP-2007-324

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
 ACRONYM(S)

AFRL/RBCA Air Force Research Laboratory
Air Vehicles Directorate
Wright-Patterson Air Force Base, OH 45433-7542
Air Force Materiel Command
United States Air Force

11. SPONSORING/MONITORING AGENCY
 REPORT NUMBER(S)
 AFRL-RB-WP-TP-2007-324

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
Journal article submitted to AIAA Journal of Guidance, Control, and Dynamics. The U.S. Government is joint author of
this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work.
PAO Case Number: AFRL/WS 07-2271, 17 Sep 2007. Paper contains color.

14. ABSTRACT
This paper poses the cooperative perimeter surveillance problem and offers a decentralized solution that accounts for
perimeter growth (expanding or contracting) and insertion/deletion of team members. By identifying and sharing the
critical coordination information and by exploiting the known communication topology, only a small communication
range is required for accurate performance. Simulation and hardware results are presented that demonstrate the
applicability of the solution.

15. SUBJECT TERMS

UAVs, cooperative control, surveillance, decentralized algorithms, coordination variables

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 32
 Derek Kingston
19b. TELEPHONE NUMBER (Include Area Code)

N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

Decentralized Perimeter Surveillance Using a Team
of UAVs

Derek Kingston∗, Randal Beard† and Ryan Holt‡

This paper poses the cooperative perimeter surveillance problem and offers a de-
centralized solution that accounts for perimeter growth (expanding or contracting) and
insertion/deletion of team members. By identifying and sharing the critical coordination
information and by exploiting the known communication topology, only a small commu-
nication range is required for accurate performance. Simulation and hardware results
are presented that demonstrate the applicability of the solution.

I. Introduction

Perimeter surveillance algorithms form the basis for effective monitoring in a number of ap-
plications including monitoring oil spills,1 contaminant clouds,2 algae bloom,3 forest fires,4, 5 and
border security.6, 7 The literature in this area can roughly be decomposed into two main groups:
sensor technology used for perimeter detection; and algorithms used to effectively gather data
along the perimeter effectively.

Sensors that have been investigated for small fixed border scenarios, such as warehouse sur-
veillance, include cameras,8 ultrasound,9 and radar.10 In Ref. 8, the authors discuss algorithms that
use image data from multiple cameras to determine a perimeter breach. Peralta9 uses a chain of
ultrasound sensors with a simple detection scheme to identify border crossings. Research has also
been done using existing airport radar equipment to identify when people or vehicles come too
close to runways.10 For spill monitoring and other dynamic perimeter scenarios, surveillance ve-
hicles are equipped with chemical concentration sensors,11 infrared cameras,5 or standard optical
cameras.1

∗Derek Kingston is with the Air Vehicles Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH
45433 (email: derek.kingston@wpafb.af.mil)

†Randal Beard is a professor in the Electrical and Computer Engineering Department of Brigham Young University,
Provo, UT 84602 (email: beard@ee.byu.edu)

‡Ryan Holt is with MIT Lincoln Laboratory, Lexington, MA 02421 (email: rholt@ll.mit.edu)

1 of 26

Our aim is to develop algorithms that operate on small UAVs which offer some distinct advan-
tages over larger UAVs. Small UAVs can be man portable and hand launchable, removing the need
for traditional runways and allowing teams to be easily and rapidly deployed even in rough terrain.
As a relatively inexpensive platform, large numbers of small UAVs can be deployed to increase
the rate at which information is gathered. The use of small UAVs creates unique requirements for
the cooperation algorithms that control teams of such vehicles. Algorithms must be robust to loss
of agents since small UAVs are more susceptible to weather conditions and are more fragile than
larger UAVs. The communication packages onboard small UAVs are often low-power, requiring
that communication constraints be explicitly addressed in their cooperation strategies. Finally, the
computational burden should remain constant regardless of team size, i.e. the cooperation algo-
rithm should scale well for large teams. Since a cooperation algorithm that is robust, addresses
communication constraints, and is scalable to large teams will work on both large and small UAVs,
we focus our efforts on developing such an algorithm.

We are particularly interested in monitoring borders that are of unknown shape and size and
possibly changing in time like those that would be encountered in monitoring a forest fire or chem-
ical spill. Additionally, we do not exclude large borders where communication range will limit the
possible interaction of the team. We will assume that UAV agents have the proper sensor suite to
detect changes in the perimeter and track the edge of the perimeter. We will not focus on the nec-
essary sensor technology to do this, but rather on the algorithms that will allow a team of agents to
monitor a perimeter in a decentralized fashion. Perimeter surveillance using multiple UAVs has the
advantage of operating in a wide variety of situations like changing perimeters (spill monitoring,
forest fire surveillance) or very large perimeters (border patrol).

A number of researchers have investigated similar problems of monitoring/tracking changing
perimeters with autonomous vehicles. The MDARS project12 is a joint effort between the Army
and Navy that networks multiple ground robots to cooperatively monitor a fixed perimeter near
critical storage facilities. A team of robots are equipped with coarse obstacle detection sensors
and a high precision narrow field of view sensor to find and track objects that have breached the
perimeter.7 The entire team of vehicles communicates to a central location where sensor data is
fused and waypoint commands are issued.6 Our work differs from MDARS in that we do not
require team agents to be in constant communication with a centralized controller; rather, agents
are frequently outside of the communication range of the other team members and must monitor
the perimeter in a decentralized manner. Information gathered by the team is then carried to a base
location where the state of the perimeter is displayed and human operators make decisions.

Teams of autonomous underwater vehicles have been proposed as a way to track algae bloom
and oil spills. In Ref. 13, Bertozzie et al. present an algorithm for monitoring a perimeter with
multiple vehicles where each is equipped with a concentration sensor. When the sensor detects the
presence of the chemical, the vehicle turns in one direction; in the absence of chemical detection,

2 of 26

the vehicle turns in the opposite direction. In this way, an agent weaves around the perimeter of
the spill while communicating the perimeter crossing points to completely survey the perimeter.
A simple spacing law adjusts the speed of the vehicles to allow the team to spread out along the
perimeter. The algorithm has been shown to work in hardware testbed experiments with virtual
perimeters.14

Clark and Fierro propose a similar method for oil spill perimeter tracking using multiple vehi-
cles.1 A fleet of vehicles is deployed and will search the region and communicate to team members
when the perimeter is located. Agents will approach the perimeter and begin to track it in a prede-
termined direction. Spacing of the vehicles is accomplished by adjusting linear velocity. Hardware
experiments using a camera sensor on wheeled robots is shown to validate the algorithm. In both
this approach and the one proposed by Bertozzi et al.,13 neither the efficiency nor the convergence
of the algorithms are shown analytically. In addition, the problem of limited communication range
is not addressed.

Susca, Martinez and Bullo address the issue of approximating a changing border with a set
of interpolation points.15 As the team agents traverse the perimeter, they update the points that
describe the perimeter to best fit a polygon to the shape of the perimeter. Their algorithm is shown
to converge and relies only on communication between immediate neighbors.

In this paper, we will present an algorithm for perimeter surveillance that: (1) is completely
decentralized, (2) is provably convergent to the optimal behavior in finite-time, (3) explicitly ac-
counts for communication range limitations, and (4) allows for changing perimeters. The primary
advantages to a decentralized approach are scalability and inherent system robustness. Since agents
only make decisions based on neighbor interactions, the required communication bandwidth and
computation is fixed irrespective of the total number of agents on the team. Decentralization is
inherently robust since each agent makes decisions with its available information without a need
to receive directions from a central location. This eliminates single points of failure and allows a
system to adapt naturally to changes in team size. Agents can be inserted and deleted from the team
at any time and the system will adjust since each agent will maneuver to find its new neighbors.
This allows agents to leave the team for high priority tasks, such as following a perimeter breach,
or in case of accident or refueling.

In addition to being fully decentralized, our approach is optimal at steady-state and has finite-
time convergence. Additionally, our approach requires very little communication bandwidth and
accounts for UAV kinematic constraints. The algorithm is limited to constant velocity vehicles
that travel along the border and due to its decentralized nature, any global information that may
be available is not exploited. For missions where robustness is valued more than efficiency, our
approach is a natural fit. Since it guarantees optimality in steady-state and finite-time convergence,
only missions that have strict efficiency requirements would not be well-suited to the approach.

The perimeter surveillance problem is posed in Sections II and III. Section IV presents our

3 of 26

solution using a coordination variable16 approach and compares it to both averaging and central-
ized solutions. The method is extended to changing perimeters in Section V and to account for
constrained UAV turning radius in Section VI. Simulation and hardware results are presented in
Sections VII and VIII. Finally, Section IX gives our conclusions.

II. Problem Formulation

The objective of the cooperative perimeter surveillance problem is to cooperatively gather in-
formation about the state of the perimeter and to transmit that data to a central base station with
as little delay and at the highest rate possible. There are a number of factors that complicate the
perimeter surveillance problem including:

1. Perimeter topology

2. Communication constraints

3. Team logistics

4. UAV capability.

Perimeter Topology. A perimeter may be static, such as a well-defined border, or changing in
time, such as a chemical spill or forest fire. A perimeter can be composed of a web of segments and
nodes that must be monitored, such as a set of city streets or a network of paths in the mountains,
although we do require the graph representing the perimeter to be strongly connected. An area
surveillance problem can sometimes be posed as a perimeter surveillance problem by constructing
a path that covers the area using, for example, a zamboni pattern, and then monitoring that path
as a perimeter. The perimeter location need not be known a priori, but when this is the case we
assume that the UAVs have the sensor capacity to detect and follow the perimeter autonomously.

Communication Constraints. Small, inexpensive UAVs often have limited communication
bandwidth and short communication range. In scenarios where the perimeter is very large or
terrain causes line-of-sight problems, agents may frequently be out of communication range of the
base station and neighboring UAVs. Additionally, the gathered data may require significant time
to transmit when a UAV is in communication range of its neighbors (e.g. complete video footage).

Team Logistics. UAVs have limited flight time and must be periodically refueled. In many
cases, a UAV may be re-tasked to investigate a perimeter breach. Hardware failures and hazardous
flying conditions may unexpectedly remove a UAV from involvement. A perimeter surveillance
solution should be robust to failures and allow for interruptions such as reassignment and refueling.

UAV Capability. The maneuverability of the UAV agents also effects the monitoring of a
perimeter. We assume that the UAVs are equipped with an autopilot similar to the one described
in Ref. 17. The autopilot maintains constant altitude and each UAV on the team is given a unique

4 of 26

altitude assignment. The autopilot has been tuned so that the closed-loop system exhibits a first
order response to roll and airspeed commands. Under these assumptions, the kinematic equations
of motion for a single UAV can be written as

ṗN = V cos ψ + wN (1)

ṗE = V sin ψ + wE (2)

ψ̇ =
g

V
tan φ (3)

V̇ = αV (V c − V) (4)

φ̇ = αφ(φ
c − φ), (5)

where p = (pN , pE)T is the inertial position of the UAV, ψ, φ, and V are the heading, roll angle, and
airspeed, g is the gravitational constant, w = (wN , wE)T is the wind vector, and V c and φc are the
airspeed and roll angle commands given to the autopilot. The first order response of the autopilot
to airspeed and roll angle commands are quantified by the parameters αV and αφ. In addition to
these kinematics, a constraint on roll angle −φmax ≤ φ ≤ φmax is enforced to ensure the safety
of the UAV. The presence of wind and the roll angle constraint impair the maneuverability of the
vehicles.

Developing a perimeter surveillance algorithm that accounts for these complications and ef-
ficiently gathers data about the perimeter state is not trivial. We reduce the general problem to
a more manageable, but still applicable, problem and present the team behavior that efficiently
solves that problem in Section III. Section IV then introduces and proves the convergence of an
algorithm for reaching the desired behavior while accounting for limited communication range.

III. Linear Perimeter Surveillance

We reduce the general perimeter surveillance problem of Section II to the linear surveillance
problem by assuming that the perimeter to be monitored is homeomorphic to a line and can there-
fore be represented as a single path between two points. This assumption eliminates perimeters
that are circular or that are connected in a web-like structure. However, an arbitrary connected
perimeter can be reduced to a linear perimeter by constructing a single tour that traverses all seg-
ments of the original perimeter. In practice, a surveillance mission will have a base of operations
where information about the perimeter is analyzed by human operators and team agents are refu-
eled and relaunched. Circular perimeters can be treated as linear perimeters with both endpoints at
the base of operations.

A linear perimeter imposes a natural order to the team where each agent has at most two imme-
diate neighbors along the perimeter. By requiring that neighbors physically meet to transmit infor-

5 of 26

mation, any size of communication range is allowed. In practice, the sensor footprint limitations
will require UAVs to physically meet their neighbors regardless of whether they can communicate
at larger distances. Therefore we assume that UAVs must meet to exchange information. Agent
meeting times can be extended by loiter patterns to facilitate the transmission of large amounts of
data. Loss or reassignment of team agents are quickly noticed by the change in the neighborhood
of affected agents.

Team planning is accomplished by considering agents as point masses that move at uniform
constant velocity along the perimeter (see Figure 1). Corresponding UAV agents follow their refer-
ence points along the perimeter as described in Section VI. We assume that point agents can reverse
direction instantaneously and that they always do so at the end of the perimeter. Communication
between point agents is only allowed when they are “touching”, i.e. when they occupy the same
physical location. One way to visualize the problem is to imagine beads sliding along a wire.

x=0 x=P1x=0 x=P

2

x=0 x=P3x=0 x=P

4

x=0 x=P5x=0 x=P

6

x=0 x=P7x=0 x=P

8

Figure 1. Example scenario where 8 agents monitor a linear perimeter.

The performance of a particular monitoring algorithm can be measured by the latency associ-
ated with information about points along the perimeter. Let P be the length of the perimeter and
let the perimeter be defined as a line along the x-axis beginning at x = 0 and continuing until
x = P . Since we assume that the point agents travel at uniform velocity V and data transmission
only occurs when agents are in immediate physical proximity, the soonest information about point
x0 is available to a recipient at the base of operations (x = 0) is in x0/V seconds. The minimum
latency profile is obtained when an agent starts at the far end of the perimeter and travels to the
base of operations, at which time it transmits all the perimeter information.

Note that adding more agents cannot decrease the latency of the gathered information as seen
at the base of operations since information can only travel as fast as a single agent. However,
increasing the number of agents on the team increases the refresh rate of the perimeter state.
Intuitively, spacing agents equally so that the refresh rate is constant will yield the most efficient
method for perimeter monitoring. This configuration can be achieved by tasking each agent to
travel to the end of the perimeter and then monitor the entire perimeter as it returns to the base
while launching agents at 2P/N intervals where N is the number of agents on the team. As agents
monitor the perimeter while traveling to the base of operations they pass agents traveling to the
end of the perimeter to begin monitoring. These meetings occur at equally spaced intervals of
length P/N . Rather than have agents traverse the entire perimeter equally spaced, each can be
responsible for a segment of length P/N and pass the information it gathers to its neighbors, thus
achieving the same overall latency profile and refresh rate.

6 of 26

Consider the behavior of a team of four agents as shown in Figure 2. The agents are uniformly
distributed along the perimeter (Figure 2(a)) and each agent meets its neighbors at the end of its
segments (Figures 2(b) and 2(c)). This oscillatory behavior of the agents requires that the team be
synchronized not only in space (equally distributed), but also in time (meet neighbors at the end of
segments).

1

2

3

4

(a) Agents are uniformly spaced
along the perimeter.

1

2

3

4

(b) Neighbors meet and exchange
perimeter state information.

1

2

3

4

(c) Perimeter state is carried to all
points along the perimeter.

Figure 2. Information exchange pattern that allows information about the state of the perimeter to be available at any point along the
perimeter.

By examining the behavior illustrated in Figure 2 it can be seen that information gathered when
neighbors meet travels to all other locations along the perimeter in the shortest time possible. This
can be seen by noting that after two agents meet and exchange information, each will take this
information at speed V to all other places along their respective segments. This information is
passed to their respective neighbors who carry it further along the perimeter, again at speed V .
Therefore, the information gathered when neighbors meet is carried to all other points along the
perimeter at the highest possible speed.

Definition 1 (Low-Latency Exchange Configuration). Consider a team of N agents monitoring a

linear perimeter of length P defined as a line along the x-axis from x = 0 to x = P . Order the

agents from the left end of the perimeter as 1 . . . N . Consider two sets of team agent locations on

the perimeter:

1. Agent i ∈ 1 . . . N is located at bi + 1
2
(−1)icP/N

2. Agent i ∈ 1 . . . N is located at bi− 1
2
(−1)icP/N

where b·c returns the largest integer less than or equal to its argument. The low-latency exchange
configuration is the behavior realized by the team when oscillating between these two team loca-

tions at speed V .

The difference between the two sets of positions in Definition 1 is the sign of the 1
2
(−1)i term.

The first set of team locations places agent 1 at x = 0 and all other agents in pairs at 2P/N equal
intervals along the perimeter (see Figure 2(c)). The second set of team locations pairs agent 1 and
2 at position x = P/N and spaces the remaining pairs at 2P/N intervals (see Figure 2(b)). Note
that for each agent i, the pair of positions in Definition 1 defines the endpoints of the segment on
which it remains while in the low-latency exchange configuration.

7 of 26

As indicated earlier, the low-latency exchange configuration is the ideal behavior for a team of
agents monitoring a linear perimeter and it will be the desired steady-state behavior of the decen-
tralized algorithm presented in Section IV. In addition to converging to the low-latency exchange
configuration, the algorithm will address deletion and insertion of team members and variable
length perimeters.

IV. Decentralized Solution

This section presents a decentralized algorithm to reach the low-latency exchange configura-
tion defined in Definition 1. One way to approach the problem is to determine the coordination

variables18 or minimum amount of information necessary to achieve cooperation. For this prob-
lem, three critical pieces of information are: (1) the perimeter length, (2) the number of agents on
the left side of the perimeter relative to a given agent, and (3) the number of agents on the right side
of the perimeter relative to a given agent. When each agent has correct coordination variables, then
each will be able to compute the perimeter segment for which it is responsible. The first step in the
decentralized solution is to ensure that when each agent has the proper values, that coordination
will be achieved.

To be precise, let each agent maintain a vector containing its local version of the coordination
variables. For each agent i ∈ 1 . . . N , let

ξi =

PRi

PLi

NRi

NLi

be the coordination vector where PRi
is the length of the perimeter to the right of agent i, PLi

is
the length of the perimeter to the left of agent i, and NRi

and NLi
are the number of agents to

the right and left of agent i respectively. We adopt the convention that x = 0 is the left border
of the perimeter and x = P is the right border. An agent i can then calculate the segment for
which it is responsible by calculating the perimeter length P = PRi

+ PLi
, the team size N =

NRi
+ NLi

+ 1 and its relative order on the team n = NLi
+ 1. By using the definition of the

low-latency exchange configuration, the segment for which agent i is responsible is defined by the
endpoints at bn ± 1

2
(−1)ncP/N . We say that each agent has correct coordination variables when

for each i ∈ 1 . . . N , PRi
+ PLi

matches the true perimeter length and NRi
+ NLi

+ 1 matches the
actual number of agents on the team.

Consider an algorithm where each agent assumes responsibility for a portion of the perimeter
and escorts any of its intruding neighbors to their shared segment border. The following algorithm

8 of 26

ensures that if each agent has correct coordination variable values (i.e. each agents knows the
length of the perimeter, the total number of agents on the team, and its position in the team), then
the low-latency exchange configuration will reached.

Algorithm 1: Neighbor Escort — from the Perspective of Agent i

if agent i rendezvous with neighbor j then
Calculate team size N = NRi

+ NLi
+ 1.

Calculate perimeter length P = PRi
+ PLi

.
Calculate relative index n = NLi

+ 1.
Calculate segment endpoints Si =

{bn− 1
2
(−1)ncP/N, bn + 1

2
(−1)ncP/N

}
.

Communicate Si to neighbor j and receive Sj .
Calculate shared border position p = Si ∩ Sj .
Travel with neighbor j to shared border position p.
Set direction to monitor own segment.

else if reached perimeter endpoint then
Reverse direction.

else
Continue in current direction.

For every consecutive pair of agents, there is a single position where their segments border
each other. When each agent has a knowledge of the length of the perimeter and its order in the
team, then the endpoints of the segment for which it is responsible are computed. The endpoint
shared with a neighbor is the shared border position to which both will travel together as seen
in Algorithm 1. In other words, each agent escorts its neighbors to the position at which they
should have met had they been in perfect synchronization. Note that agents only reverse direction
at perimeter endpoints and when they finish escorting neighbor agents, so each agent is guaranteed
to meet its neighbors.

Theorem 1. Let the perimeter length P and number of agents N be fixed. If all agents have

correct coordination values, then Algorithm 1 ensures that the low-latency exchange configuration

is achieved after time 2T has passed where T = V/P corresponds to the time required for one

agent to travel the length of the perimeter.

Proof. Team agents can initially be positioned anywhere along the perimeter and can be traveling
either to the left or right (recall that constant uniform velocity is assumed). Since each agent has
correct coordination variables, then each can calculate the segment along the perimeter for which
it is responsible. Agents are guaranteed to meet both neighbors since Algorithm 1 only commands
agents to reverse direction at a perimeter (not segment) endpoint or when concluding a neighbor
escort.

For N agents monitoring a border of length P , order the segments of size P/N from the left

9 of 26

edge of the perimeter as 1, . . . , N and label each agent so that agent i is responsible for segment i.
Consider first the actions of agent 1. Once agent 1 has escorted its right neighbor to their shared
border, then no agent to the right of agent 1 will ever travel along segment 1 again. This can be
seen by noting that after agents 1 and 2 split at their shared boundary both will travel the length of
one segment to get to the opposite end of their respective segments. If agent 2 meets agent 3 along
the way, then agents 2 and 3 will continue to their shared border before agent 2 reverses direction,
as in Figure 3. Therefore, agent 2 will travel at least one segment length away from the boundary
between segments 1 and 2. Since both travel at a uniform constant velocity, then agent 1 will arrive
back at the border between segments 1 and 2 at the same time or before agent 2, but never after.
Now consider agent 2 after it has been escorted by agent 1 to their shared boundary. Since by this
time agent 2 never ventures into segment 1, the border between agents 1 and 2 can be regarded as
a fixed perimeter endpoint for agent 2. The same analysis now holds if we consider agent 2 the
leftmost agent in a set of N − 1 agents. Observe that the same argument holds starting with the
rightmost agent and considering all agents to the left. Therefore, there is a time τ after which all
agents are only found on their respective segments. This implies that the low-latency exchange
configuration of Section III has been reached.

1

2

(a) Agents 1 and 2 separate at their shared border.

1

2

3

(b) Agent 2 encounters agent 3 earlier than expected
and escorts it to their shared border before reversing
direction.

1

2

(c) Agents 1 and 2 separate at their shared border.

1

2

3

(d) Agent 2 encounters agent 3 later than expected
and escorts it to their shared border before continuing
on to meet agent 1.

Figure 3. Possible cases for rendezvous of agent 1 with its neighbor.

The worst case situation occurs when all agents are stacked infinitesimally close at one end
of the perimeter and are traveling toward the other end. Once T has passed, all agents are at the
opposite end of the perimeter where they meet both of their neighbors. Each pair will travel to
their shared borders which for the farthest pair will require a travel time less than T . Therefore,
the steady-state behavior will be achieved before time 2T .

Figure 4 shows two simple scenarios with 8 agents spreading out over a fixed perimeter where
each agent begins with correct coordination variables. The positions of agents along the perimeter
is indicated vertically with the time axis shown horizontally. The lattice structure indicates that the
desired steady-state behavior has been reached since agents turn around precisely at their desired

10 of 26

neighbor rendezvous locations. Note that the agents require very few meetings with each other to
converge to the proper configuration.

1

2

3

4

5

6

7

8

(a) Initial positions and directions for a group of 8 agents
in scenario A.

1

2

3

4

5

6

7

8

(b) Initial positions and directions for a group of 8 agents
in scenario B.

0 0.2 0.4 0.6 0.8 1T 1.2 1.4 1.6 1.8 2T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

(c) Position of agents along the perimeter over time for
scenario A.

0 0.2 0.4 0.6 0.8 1T 1.2 1.4 1.6 1.8 2T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

(d) Position of agents along the perimeter over time for
scenario B.

Figure 4. Team behavior in two scenarios for point agents whose behavior is governed by Algorithm 1. The position of agents along the
perimeter is indicated vertically with the time axis shown horizontally. The lattice structure indicates that the desired steady-state behavior
has been reached.

IV.A. Comparison with Centralized Algorithm

To understand the characteristics of Algorithm 1, it is useful to compare its performance with other
methods of perimeter surveillance. A centralized method for reaching the low-latency exchange
configuration is to compare the initial positions of the team with all possible team locations in the
low-latency exchange configuration and find the one that requires the shortest convergence time.

Let Q be the set of team positions during the desired steady-state operation where an element
q ∈ Q consists of N positions, qi corresponding to the position of agent i in the low-latency
exchange configuration. Note that the set of all team configurations that satisfy the low-latency
exchange configuration can be parameterized by the position of the first agent

qi = (i− 1)
P

N
+

(
P
N
− q1

)
if i is even

q1 otherwise .
(6)

Therefore, if the position of the first agent is known in the low latency configuration, then for a
perimeter of length P , q1 is on the interval [0, P

N
] and all other positions can be calculated using

11 of 26

Equation (6). The centralized method is to command the team located at pi, i = 1 . . . N to converge
to q∗ where

q∗ = arg min
q∈Q

max
i=1...N

|pi − qi| . (7)

In other words, the optimal solution is to pick the low-latency team configuration that is closest
to the current position of the team. During the transition from the initial position to the nearest
low-latency configuration position q∗, agents reach their correct position and loiter there until the
remaining team members have reached their respective positions. While it may not desirable to
allow agents to loiter unless transmitting large amounts of information, this capability makes the
centralized algorithm reach a tight lower bound on the achievable convergence speed to the low-
latency exchange configuration.

In the worst case scenario where all agents are located at one end of the perimeter, the cen-
tralized algorithm converges in time T , twice as fast as the decentralized method. Figure 5 shows
a comparison of the centralized algorithm and Algorithm 1. Note that the centralized algorithm
requires agents to wait or loiter at the proper location until all agents have reached q∗. This is
indicated by the straight lines in Figure 5.

Monte-Carlo simulations indicate that the centralized algorithm reaches the low-latency ex-
change configuration on average 0.67T seconds faster than the decentralized method (standard
deviation of 0.17T seconds). The maximum time difference between the centralized algorithm and
Algorithm 1 was 0.998T seconds corresponding to the theoretical worst case difference. The cen-
tralized algorithm requires complete knowledge of the state of the team and explicit cooperation of
all team members. The value of Algorithm 1 is that its performance is comparable to the optimal
solution in speed, but is implemented in a decentralized, robust way.

IV.B. Comparison with Consensus Method

The second method to which we compare Algorithm 1 is a distributed consensus algorithm modi-
fied for perimeter surveillance. The standard consensus problem for a group of agents is to ensure
that as time progresses each agent approaches a consistent understanding of their shared informa-
tion. For example, one method of coming into consensus is for each agent to repeatedly average
its associated variable with those communicated from its immediate neighbors. If the interaction
graph among the team contains a spanning tree, then the coordination variable of each agent will
asymptotically approach a constant shared value and the team is said to asymptotically reach con-
sensus.19

Adapting a consensus method to the perimeter surveillance problem involves defining the value
associated for each agent and a strategy for updating those values. Let the length of the segment
for which an agent is responsible be the value associated with that agent. Consider the rendezvous
of two agents on the perimeter. When agents meet, they communicate the length of their respective

12 of 26

1

2

3

4

5

6

7

8

(a) Initial positions and directions for a group of 8 agents.

1

2

3

4

5

6

7

8

(b) Initial positions and directions for a group of 8 agents.

0 0.2 0.4 0.6 0.8 1T 1.2 1.4 1.6 1.8 2T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

(c) Position of agents along the perimeter over time when
using the centralized algorithm (7).

0 0.2 0.4 0.6 0.8 1T 1.2 1.4 1.6 1.8 2T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

(d) Position of agents along the perimeter over time when
using Algorithm 1.

Figure 5. Team behavior in a comparison of Algorithm 1 and the centralized algorithm (7). The position of agents along the perimeter is
indicated vertically with the time axis shown horizontally. The lattice structure indicates that the desired steady-state behavior has been
reached. Straight lines indicate that an agent is maintaining its current position along the perimeter. Note that the centralized algorithm
requires agents to wait for the rest of the team to settle into the optimal starting configuration while Algorithm 1 reaches the low-latency
exchange configuration after some interaction time.

segments and average to find the midpoint of their shared segment. Both travel together to the mid-
point of their shared segment20 and seperate with an updated value for how much of the perimeter
each is responsible for. For every pair of agents, their shared segment is defined by endpoints
determined by the locations where each agent met its other neighbor.

The difficulty with this method is that the value to which the team will converge must be P/N

where P is the length of the perimeter; otherwise, agents would be continuously overlapping or
neglecting part of the perimeter. A specialization of the general consensus problem to the average
consensus problem can be made which ensures that the team will converge to the exact average of
the initial values. The only remaining difficulty is initializing the system so that the segment lengths
associated with the team of agents sum to P . We do this by assuming that agents are launched with
a value of zero with the exception of the first agent who travels to the end of the perimeter and
initializes its value to P . This approach has three consequences. First, although the algorithm can
account for arbitrary perimeter length, the perimeter must remain fixed. Second, loss of an agent
during the mission will remove its segment length from the knowledge of the team. In each case,
the prerequisites for average consensus would be violated and the team would fail to converge to
the true value of P/N . Finally, convergence is, in general, asymptotic in nature rather than in
finite-time as Algorithm 1 guarantees. Figure 6 shows the performance of the average consensus

13 of 26

algorithm compared to Algorithm 1. In addition to the above limitations of fixed perimeter length
and asymptotic convergence, the consensus method seems to exhibit poor transient response.

1

2

3

4

5

6

7

8

(a) Initial positions and directions for a group of 8 agents.

1

2

3

4

5

6

7

8

(b) Initial positions and directions for a group of 8 agents.

0 1T 2T 3T 4T 5T 6T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

(c) Position of agents along the perimeter over time when
using a consensus method.

0 1T 2T 3T 4T 5T 6T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

(d) Position of agents along the perimeter over time when
using Algorithm 1.

Figure 6. Team behavior in a comparison of Algorithm 1 and a consensus method. The position of agents along the perimeter is indicated
vertically with the time axis shown horizontally. The lattice structure indicates that the desired steady-state behavior has been reached.
Note that the consensus method converges asymptotically while Algorithm 1 reaches the low-latency exchange configuration in finite time.

Algorithm 1 relies only on interactions of an agent with its immediate neighbors on the perime-
ter and yet it converges to the low-latency exchange configuration in finite time. In Section V we
show that the decentralized nature of the algorithm allows the team to accommodate loss or re-
assignment of agents. In the event of a perimeter breach, an agent can be assigned to follow the
intruder while the rest of the team reconfigures to monitor the border in its absence. Since the
algorithm converges in finite-time, the loss in perimeter coverage is quickly compensated. This
same natural reconfiguration behavior is desirable in the event of refueling and agent loss due to
hazardous conditions.

V. Changing Perimeters

Theorem 1 ensures finite time convergence to the low-latency exchange configuration of Sec-
tion III when the correct values of the coordination variables are known by each agent. By allowing
each agent to update its instantiation of the coordination variables, Algorithm 1 can be modified
to ensure each member of the team will obtain the correct values. This will allow the team to
naturally compensate for agent reassignment or loss and perimeter growth.

14 of 26

Each agent maintains local instantiations of the coordination variables that track the perimeter
distance and the number of agents to its left and to its right. These coordination variables are
updated when meeting with another agent on the team by querying the neighbor about the portion
of the perimeter which it has most recently traveled. If the perimeter and number of agents is
fixed, then the coordination variables will eventually be consistent among the team since agents are
guaranteed to meet both neighbors. Once the coordination variables are correct, Theorem 1 ensures
that the desired steady-state behavior will be achieved. Note that the same method used to update
the coordination variables can also be used to detect changes in the perimeter or insertion/deletion
of team members.

Algorithm 2: Variable Neighbor Escort — from the Perspective of Agent i

if agent i (left) rendezvous with neighbor j (right) then
Update perimeter length and team size:

PRi
= PRj

PLj
= PLi

NRi
= NRj

+ 1

NLj
= NLi

+ 1.
Calculate team size N = NRi

+ NLi
+ 1.

Calculate perimeter length P = PRi
+ PLi

.
Calculate relative index n = NLi

+ 1.
Calculate segment endpoints Si =

{bn− 1
2
(−1)ncP/N, bn + 1

2
(−1)ncP/N

}
.

Communicate Si to neighbor j and receive Sj .
Calculate shared border position p = Si ∩ Sj .
Travel with neighbor j to shared border p.
Set direction to monitor own segment.

else if reached left perimeter endpoint then
Reset perimeter length to the left PLi

= 0.
Reset team size to the left NLi

= 0.
Reverse direction.

else if reached right perimeter endpoint then
Reset perimeter length to the right PRi

= 0.
Reset team size to the right NRi

= 0.
Reverse direction.

else
Continue in current direction.

Algorithm 2 operates in the same manner as Algorithm 1, with the additional steps of commu-
nicating and updating the coordination variables. For example, consider two agents starting from
opposite ends of the perimeter, each without knowledge of the other. Let agent 1 start at x = 0

15 of 26

and agent 2 start at x = P , but let the launch time of agent 2 be delayed with respect the launch of
agent 1. As each agent progresses along the perimeter, it keeps track of the distance traveled from
launch. When the two agents finally meet, agent 1 updates NR1 to be equal to one plus the number
of agents to the right of agent 2 and PR1 equal to PR2 communicated from agent 2; similarly, agent
2 updates NL2 and PL2 from the communication from agent 1. At this point, the coordination
variables are correct and Theorem 1 ensures that the low-latency exchange configuration will be
reached in finite time.

Theorem 2. Let the perimeter length P and number of agents N be fixed. Algorithm 2 ensures

that the low-latency exchange configuration is achieved before 5T for arbitrary initial conditions

of position, direction, and coordination variables of each agent on the team.

Proof. We first prove that all agents on the team converge to the correct coordination variables in
finite time when using Algorithm 2. Since an agent only changes direction at perimeter endpoints
or when completing a meeting with its neighbors, all agents are guaranteed to meet their neighbors
along the perimeter.

Order the N agents from the left edge of the perimeter as 1, . . . , N and consider the actions
of agent 1. Agent 1 is guaranteed to visit the left endpoint of the perimeter either after an escort
from agent 2 or immediately due to initial conditions. Once agent 1 has visited the perimeter
endpoint, both NL1 and PL1 are correct due to the section of Algorithm 2 that resets those variables
at endpoint rendezvous. Now consider the meeting of agent 1 and agent 2. At this point, agent 2
updates NL2 and PL2 through communication with agent 1 and thereby obtains correct values for
those coordination variables. Note that repeated meetings between agent 1 and 2 will not change
the correctness of their coordination variables since N and P are fixed. Now consider agent 2 as the
left most agent in a team of N−1 agents and note that its right neighbor is ensured to obtain correct
left coordination variables. Clearly, the same holds from the right end of the perimeter. Since
only one neighbor meeting is required after the endmost agent has obtained correct coordination
variables and the team size is reduced at each stage and meetings are guaranteed to occur in finite
time, the entire team obtains correct coordination variables in finite time.

During the transient period when the team is learning the correct coordination variables, the
calculation of the shared segment border is incorrect relative to the low-latency configuration, but
consistent among the agents involved in the rendezvous. This can be seen by noting that after both
agents have communicated and updated their coordination variables with the other, they each have
the same understanding of P and N and can consistently calculate their shared border position. So
while they are escorting each other to the (ultimately) wrong position, they are still guaranteed to
continue in the correct directions to ensure that each agent meets both its neighbors.

Once the coordination variables are correct for each agent on the team, application of Theo-
rem 1 ensures that the low-latency exchange configuration will be met in finite time.

16 of 26

In evaluating the performance of Algorithm 2, we examine the worst case scenario for a bound
on the convergence time. The worst case occurs when the overlap of the team is the greatest, that
is, when agents are forced to travel together rather than space out along the perimeter.

t = 0

x=0 x=P
1

x=0 x=P
2

(a) Both agents start at one end of the perimeter.

t ≈ T

x=0 x=P
1

x=0 x=P
2

(b) They travel the full length before agent 2 reaches
the right perimeter endpoint.

t ≈ T

x=0 x=P
1

x=0 x=P
2

(c) Agents rendezvous and calculate shared border
position. The worst case is for both to travel together
to near the other endpoint.

t ≈ 2T

x=0 x=P
1

x=0 x=P
2

(d) The pair reaches the shared border position and
separates.

t ≈ 2T

x=0 x=P
1

x=0 x=P
2

(e) Agents 1 reaches the perimeter endpoint and up-
dates to correct coordination variables.

t ≈ 3T

x=0 x=P
1

x=0 x=P
2

(f) Agent 2 reaches the right perimeter endpoint
again while being pursued closely by agent 1.

t ≈ 3T

x=0 x=P
1

x=0 x=P
2

(g) The second meeting between agents 1 and 2
where both reach correct coordination variables.

t < 5T

x=0 x=P
1

x=0 x=P
2

(h) The team spreads out with a consistent view of
the perimeter and number agents on the team.

Figure 7. Worst case scenario for convergence to the low-latency exchange configuration when initial values of the coordination variables
are arbitrary.

Consider N agents stacked infinitesimally close at x = 0 and headed in the positive direction
(see Figure 7(a)). After time T has passed, agent N will reach the right perimeter endpoint and
update PRN

and LRN
to correct values (Figure 7(b)).

Once agent N has visited the perimeter endpoint, it will rendezvous with the rest of the team
(Figure 7(c)). At this instant, agent 1 has arbitrary values for its coordination variables. Suppose
that the coordination variables for agent 1 and agent N are such that the shared border position for
agents N and N−1 is at x = ε for ε << 1. In this case, the entire team will again travel the length
of the perimeter to x = ε which requires less than another T units of time (Figure 7(d)).

At this point, agent N separates from the team and begins heading toward the right end of
the perimeter. Agents 1 . . . N−1 encounter the left endpoint of the perimeter and update to a
completely correct set of coordination variables (Figure 7(e)). With correct coordination variables,
the team begins to space out equally along the perimeter. Note that agent N−1 will chase agent
N the entire length of the perimeter since it will escort agent N−2 to their shared border position
and then continue to the right.

Agent N−1 follows agent N to the right end of the perimeter for T units of time (Figure 7(f)).

17 of 26

Once they meet, agent N will update to correct coordination variables (Figure 7(g)). At this point,
3T has passed and the team satisfies the conditions for Theorem 1 since each has correct coordi-
nation variables. By Theorem 1, at most 2T additional time is need to converge to the low-latency
exchange configuration (Figure 7(h)). Therefore, 3T is an upper bound to convergence of the
team to correct coordination variables and 5T is an upper bound to convergence of the team to the
low-latency exchange configuration.

Algorithm 2 is successful because each agent has finite memory. Since the local instantiations
of the coordination variables are updated with the most recent information gathered, past informa-
tion does not affect team behavior. In addition to enabling the team to come to correct values of
the coordination variables, this finite memory property allows the team to adapt to step changes
in perimeter and team size. Since Algorithm 2 operates under arbitrary initial conditions, a step
change in perimeter or team size would be analyzed by simply considering new initial conditions
of the team at the time of the step change. Figure 8 shows agents tracking a perimeter with a
step change in size and a perimeter with sinusoidal growth. The algorithm accommodates step
changes in perimeter size, but also allows good tracking for other types of perimeter growth. Note
that agents do not have any knowledge a priori of the perimeter length or number of agents on
the team. The coordination variables of each agent are updated through repeated interactions with
other team members.

0 1T 2T 3T 4T 5T 6T 7T 8T
0

0.2

0.4

0.6

0.8

P

1.2

1.4

1.6

1.8

2P

(a) Positions of agents over time for step change in
perimeter length.

0 1T 2T 3T 4T 5T 6T 7T 8T
0

0.2

0.4

0.6

0.8

P

1.2

1.4

(b) Positions of agents over time for sinusoidal perimeter
growth.

Figure 8. Team behavior of agents tracking changing perimeters using Algorithm 2 to continuously update the coordination variables.
Agents learn the size of the perimeter and number of agents on the team through repeated interaction with other team members.

Algorithm 1 can also be extended to account for long communication events. In a perimeter
imaging scenario, agents survey the perimeter segment for which they are responsible and when
each meets its neighbor it must transmit large amounts of data. In this case, agent meetings cannot

18 of 26

be instantaneous, rather a fixed amount of time is allotted for agents to loiter at the meeting lo-
cation to allow longer communication events. After an agent finishes escorting its neighbor, both
loiter together for a pre-determined amount of time. Figure 9 shows a scenario involving long
communication events.

0 1T 2T 3T 4T 5T 6T 7T 8T
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P

Figure 9. Example scenario where Algorithm 1 is modified to account for long rendezvous timing.

VI. UAV Agents

Algorithm 1 developed the motion of the reference points for a team of UAVs to follow to
achieve the low-latency exchange configuration. In practice, the reference point generalization is
only followed when agents are involved in a rendezvous with another agent. Between meetings,
the center of the constant airspeed UAV is considered the point along the perimeter. However,
since a UAV has a constrained turning radius, it cannot precisely follow a reference point that
can instantaneously turn around. The purpose of this section is to investigate the application of
Algorithm 1 when the dynamics of the UAVs are considered.

In Section III agents are modeled as points that could communicate only when touching. Now
consider UAVs flying at constant velocity with nominal turning radius R. A maneuver for reversing
direction with constrained turning radius is shown in Figure 10 where the UAV follows arcs along
minimum turn radius circles to complete the path direction reversal.

The distance required to travel around the U-turn trajectory in Figure 10 is ∆ = 7
3
πR. To

allow the reference point to follow the pattern dictated by Algorithm 1, both UAVs must be able
to communicate far enough in advance to begin their U-turn maneuvers so that they complete the
maneuver in time to continue following their reference point. Since each requires a distance of

19 of 26

∆

Figure 10. U-turn maneuver that satisfies the constrained turning radius of the UAV.

7
3
πR to turn around, the minimum communication radius allowed must be 14

3
πR so that both can

be aware of an imminent rendezvous.
Other methods of rendezvous can be implemented to allow for shorter communication range.

For example, the U-turn maneuver could be implemented by having both UAVs circle the point
of rendezvous before continuing on in the prescribed direction. This is implemented by having
the reference points wait at the rendezvous similar to the behavior of the agents that have long
communication events. In other words, when UAVs meet, they loiter at the rendezvous point for a
specified amount of time before continuing with the algorithm and data gathering.

A method for reducing the amount of turning around by the team is for neighbors to switch
roles at rendezvous. This allows both to continue in their current directions while still maintaining
the integrity of the algorithm. When two agents meet, they can negotiate which direction is of
higher utility and swap roles if necessary. This would allow UAVs to move down the perimeter
toward the base station for refueling without disrupting the perimeter surveillance pattern of the
team.

VII. Simulation Results

To verify the feasibility of implementing Algorithm 1 on a team of UAVs, a high fidelity sim-
ulation was performed. Each UAV was simulated with full 6 degree-of-freedom dynamics model

20 of 26

with aerodynamic parameters that match the small UAVs flown at BYU.17 The simulation sce-
nario involved three UAVs monitoring a changing perimeter composed of 4 waypoints with a total
length of 1.46 km. Each UAV is equipped with autopilot software that enables accurate waypoint
tracking17 with a turning radius of approximately 50 meters. The communication model allows
UAVs to communicate only to adjacent neighbors who are inside the communication range of
approximately 370 meters, the minimum distance necessary to perform the U-turn maneuver.

The simulation scenario starts with only two of the three UAVs being launched. Each agent
starts without knowledge of the number of agents on the team or the perimeter length. Even
though the perimeter is defined by predetermined waypoints, we require the UAVs to initially treat
the perimeter length as unknown. After about 400 seconds, a step change in the perimeter length
occurred by adding an additional waypoint, followed by another change a short time later. At
approximately 900 seconds in simulation time, the third UAV was launched. Before the simulation
terminated, the team experienced two more changes in the perimeter length, one at each end.

Figure 11 shows the simulation results by plotting the normalized position of each UAV along
the length of the perimeter. Note that in the regions where the team should already be locked into
the ideal configuration, some position overlap is still observed. This is caused by the inability of
the UAVs to perform the U-turn maneuver precisely, and results in a disturbance to the system.
However, the overall behavior of the team is as expected, with the agents reaching the desired
steady-state behavior quickly and reacting appropriately to step changes in both the perimeter
length and team size.

It should be noted that even though the UAVs cannot turn around instantaneously, the position
plot in Figure 11 shows the reference point being followed by the UAV. When the UAV is not
implementing a U-turn, the reference point is the center of the UAV; during U-turn maneuvers,
the reference point continues along the path to the agreed upon rendezvous point and reverses
direction.

VIII. Flight Test Results

The decentralized cooperative-surveillance algorithm was further validated by hardware flight
tests using the experimental testbed described in Ref. 17. Figure 12 shows the key elements of our
testbed. The first frame shows the Kestrel autopilot which is equipped with a Rabbit 3000 29 MHz
processor, rate gyros, accelerometers, and absolute and differential pressure sensors. The second
frame in Figure 12 shows the airframes similar to the ones used for the flight tests reported in this
paper. The airframe is a 48 inch wingspan Zagi XS EPP foam flying wing that was selected for
its durability and adaptability to different mission scenarios. Embedded in the airframe are the
autopilot, batteries, a 1000 mW, 900 MHz radio modem, and a GPS receiver. The third frame in
Figure 12 shows the ground station components. A laptop runs the Virtual Cockpit software that

21 of 26

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.25

0.5

0.75

1

1.25

P
er

im
et

er
 P

os
iti

on

(n
or

m
al

iz
ed

 u
ni

ts
)

Time (seconds)

Figure 11. Simulation results showing the normalized position of each UAS along the perimeter. Changes to the perimeter length occurred
at approximately 400, 700, 1100, and 1600 seconds. The third agent was introduced at approximately 950 seconds. The sharp peaks are a
result of the coordination variables being reset.

Figure 12. Hardware platform used to obtain experimental results. The first frame shows the Kestrel autopilot designed at BYU. The
second frame shows airframes similar to those used in this study. The third frame shows the ground station components for our testbed.

interfaces through a communication box to the UAVs. An RC transmitter is used as a stand-by
fail-safe mechanism to facilitate safe operations.

Flight test results involving two UAVs are shown in Figure 13 which displays the normalized
position of two UAVs along the perimeter. Figure 14 shows the inertial position plots that were
generated from the actual telemetry files of the UAVs. Figure 14 demonstrates the algorithm by
showing (a) the initial condition for the two agents, (b) the first rendezvous, (c) the turn-around
at the shared border, (d) the first meeting of the perimeter endpoints, (e) the second rendezvous,
and (f) the second meeting of the perimeter endpoints.

The algorithm was initiated at approximately 50 seconds, after the two agents had passed each
other. The first UAV (blue), having traveled a greater distance than its neighbor, turned around
immediately while the second UAV (red) traveled to the shared border before turning around. At

22 of 26

0 100 200 300 400 500 600
0

0.25

0.5

0.75

1

P
er

im
et

er
 P

os
iti

on

(n
or

m
al

iz
ed

 u
ni

ts
)

Time (seconds)

Figure 13. Experimental results showing the normalized position of each UAS along the perimeter. The decentralized cooperative-
surveillance algorithm was started at approximately 50 seconds.

this point the agents reached the steady-state configuration. As seen in Figure 13, there is some
overlap in position between the two agents. This is a result of the inability of the UAVs to complete
a precise U-turn maneuver. It should also be noted that the shared-border position of the two agents
appears to be around 60% of the perimeter length instead of the theoretically predicted 50%. This
deviation was caused by wind pushing the second agent, thereby enabling Agent 2 to cover more
distance than Agent 1. Wind speeds during the flight tests were estimated at 35% of the airspeed of
the UAVs. Despite the disturbance of the wind, the agents were still able to effectively distribute
themselves evenly along the perimeter.

IX. Conclusions

This paper has presented a decentralized algorithm for perimeter surveillance that converges in
finite time. By sharing information regarding the perimeter length and number of team members,
each agent obtains a consistent set of coordination variables that allows the decentralized algorithm
to operate effectively. Advantages of the algorithm include the ability to monitor changing perime-
ters, account for dynamic insertion and deletion of team members, and the ability to operate with a
small communication range in a decentralized manner. Simulation and flight tests were performed
to validate the effectiveness of the algorithm.

23 of 26

(a) Initial Conditions (b) First Rendezvous

(c) Turn Around at Border (d) Meet Endpoints

(e) Second Rendezvous (f) Meet Endpoints Again

Figure 14. Various plots generated from the actual telemetry files of the UASs collected during the experimental flight tests. These demon-
strated the functionality of the distributed spread algorithm, where (a) are the initial conditions, (b) is the first rendezvous, (c) is the
turn-around at the shared border, (d) is the first meeting of the perimeter endpoints, (e) is the second rendezvous, and (f) is the second
meeting of the perimeter endpoints.

24 of 26

Acknowledgements

This research was supported by NASA under STTR contract No. NNA04AA19C to Scien-
tific Systems Company, Inc (SSCI) and Brigham Young University (BYU), by the National Sci-
ence Foundation under Information Technology Research Grant CCR-0313056, and by the United
States Air Force under AFOSR Award number FA9550-04-1-0209. Special thanks to David Jo-
hansen for help with software used in flight testing.

References

1Clark, J. and Fierro, R., “Cooperative Hybrid Control of Robotic Sensors for Perimeter Detection and Tracking,”
Proceedings of the American Control Conference, 2005.

2White, B. A., Tsourdos, A., Ashokoraj, I., Subchan, S., and Zbikowski, R., “Contaminant Cloud Boundary
Monitoring Using UAV Sensor Swarms,” AIAA Journal of Guidance, Control, and Dynamics, (submitted).

3Bertozzi, A. L., Kemp, M., and Marthaler, D., “Determining Environmental Boundaries: Asynchronous Com-
munication and Physical Scales,” Proceedings of the Block Island Workshop on Cooperative Control, Springer-Verlag
Series: Lecture Notes in Control and Information Sciences, 2004.

4Casbeer, D. W., Li, S.-M., Beard, R. W., McLain, T. W., and Mehra, R. K., “Forest Fire Monitoring Using
Multiple Small UAVs,” Proceedings of the American Control Conference, 2005.

5Casbeer, D. W., Kingston, D. B., Beard, R. W., McLain, T. W., Li, S.-M., and Mehra, R., “Cooperative Forest
Fire Surveillance Using a Team of Small Unmanned Air Vehicles,” International Journal of System Sciences, Vol. 36,
No. 6, May 2006, pp. 351–360.

6Laird, R. T., Everett, H. R., Gilbreath, G. A., Heath-Pastore, T. A., and Inderieden, R. S., “MDARS Mul-
tiple Robot Host Architecture,” Association of Unmanned Vehicle Systems, 22nd Annual Technical Symposium and
Exhibition, 1995, Available at http://www.nosc.mil/robots/land/mdars/auvsmrha.html.

7Everett, H. R., “Robotic security systems,” IEEE Instrumentation & Measurement Magazine, Vol. 6, No. 4,
Dec. 2003, pp. 30–34.

8Young, S., Forshaw, M., and Hodgetts, M., “Image comparison methods for perimeter surveillance,” Proceed-
ings of the International Conference on Image Processing and Its Applications, 1999.

9Peralta, J. O. and de Peralta, M. T. C., “Security PIDS with physical sensors, real-time pattern recognition, and
continuous patrol,” IEEE Transactions on Systems, Man and Cybernetics, Part C, Vol. 32, Nov. 2002, pp. 340–346.

10Barry, A. S. and Czechanski, J., “Ground surveillance radar for perimeter intrusion detection,” Proceedings of
the Digital Avionics Systems Conference, 2000.

11Marthaler, D. and Bertozzi, A. L., “Tracking Environmental Level Sets with Autonomous Vehicles,” Recent
Developments in Cooperative Control and Optimization, Kluwer Academic Publishers, 2004.

12Space and Naval Warfare Systems Command, “Mobile Detection Assessment and Response System
(MDARS),” http://www.nosc.mil/robots/land/mdars/mdars.html.

13Kemp, M., Bertozzi, A. L., and Marthaler, D., “Multi-UUV perimeter surveillance,” Proceedings of the
IEEE/OES Autonomous Underwater Vehicles Conference, 2004.

14Hsieh, C. H., Jin, Z., Marthaler, D., Nguyen, B. Q., Tung, D. J., Bertozzi, A. L., and Murray, R. M., “Ex-

25 of 26

http://www.nosc.mil/robots/land/mdars/auvsmrha.html
http://www.nosc.mil/robots/land/mdars/mdars.html

perimental Validation of an Algorithm for Cooperative Boundary Tracking,” Proceedings of the American Control
Conference, 2005.

15Susca, S., Martinez, S., and Bullo, F., “Monitoring Environmental Boundaries with a Robotic Sensor Network,”
IEEE Transactions on Control Systems Technology, (accepted for publication).

16Ren, W., Beard, R. W., and McLain, T. W., Cooperative Control, Vol. 309, chap. Coordination Variables and
Consensus Building in Multiple Vehicle Systems, Springer-Verlag Series: Lecture Notes in Control and Information
Sciences, 2004, pp. 171–188.

17Beard, R., Kingston, D., Quigley, M., Snyder, D., Christiansen, R., Johnson, W., Mclain, T., and Goodrich, M.,
“Autonomous Vehicle Technologies for Small Fixed Wing UAVs,” AIAA Journal of Aerospace Computing, Informa-
tion, and Communication, Vol. 2, No. 1, Jan. 2005, pp. 92–108.

18McLain, T. W. and Beard, R. W., “Coordination Variables, Coordination Functions, and Cooperative Timing
Missions,” Proceedings of the American Control Conference, 2003.

19Ren, W. and Beard, R. W., “Consensus Seeking in Multi-agent Systems Under Dynamically Changing Interac-
tion Topologies,” IEEE Transactions on Automatic Control, Vol. 5, No. 5, May 2005, pp. 655–661.

20Kingston, D. B. and Beard, R. W., “Discrete-Time Average-Consensus under Switching Network Topologies,”
Proceedings of the American Control Conference, 2006.

26 of 26

	Kingston_jgcd07.pdf
	I Introduction
	II Problem Formulation
	III Linear Perimeter Surveillance
	IV Decentralized Solution
	IV.A Comparison with Centralized Algorithm
	IV.B Comparison with Consensus Method

	V Changing Perimeters
	VI UAV Agents
	VII Simulation Results
	VIII Flight Test Results
	IX Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

